
July 27, 1993

1

Using Asynchronous I/O

and Direct I/O in IRIX 5.X

Bill Mannel, Huy Nguyen, Kris Solem

Silicon Graphics Inc.

This paper is intended to provide guidance in programming applications using

asynchronous I/O and direct I/O. It builds upon work done by Jay McCauley and

Dave Ciemiewicz, of Silicon Graphics, and uses materials, drawings, and code

examples developed by them.

Introduction

Asynchronous I/O and direct I/O are two new features available with the 5.X release of

IRIX. They provide finer control of I/O operations than those provided by standard

UNIXTM I/O mechanisms, and will have many applications in real-time processing, fast

data transfer, and on-line transaction processing (OLTP).

Asynchronous I/O

With IRIX 5.X, support for asynchronous I/O was added in accordance with the specifi-

cation in POSIX 1003.4a Draft 12. With asynchronous I/O, a user can queue read and

write requests to a device, and optionally receive a queued signal when the request com-

pletes. The read or write function call will return when the request is queued, rather

than blocking the process. As such, a process can simultaneously queue a number of

requests, without waiting for any of them to complete.

Asynchronous I/O is performed via sproc(2)’ed processes. When a process first exe-

cutes an aio request, an aio initialization routine is started. This routine, by default, cre-

ates four sproc processes to handle requests. These sprocs then wait on a semaphore for

work. When a user issues an aio_read(3) or aio_write(3) request, the request is attached

to a linked list of outstanding requests, and the semaphore is incremented to ‘kick off’ a

slave process to service this transaction.

Normally aio operations are performed in the order of process priority. The user can

optionally reduce the priority of a particular request.

Using Asynchronous I/O

2 Using Asynchronous I/O and Direct I/O in IRIX 5.X

Also, a signal can be sent to the process upon completion of the transfer.

Using Asynchronous I/O

Asynchronous I/O uses a control block to set up the transaction. This control block is of

type aiocb_t and is defined in /usr/include/aio.h. The following elements in the control

block can be modified by the user:

In order to queue an aio request, the user must:

• open a file using open(2) to get a file descriptor

• fill at least the first four elements of the aio control block

• use aio_read(3),aio_write(3), lio_listio(3) to queue the request

When filling the aio control block, the user specifies a file descriptor, an offset (use 0 if

starting at the beginning of the file), a pointer to a buffer to write into/read from, and the

number of bytes to transfer.

Normally aio requests are queued in the order of the priority of the processes initiating

the requests. However, the user has the option of lowering the priority (making it worse)

by assigning a value other than 0 to aio_reqprio in the aio control block. This value will

be added to the process priority to determine the order.

If aio_sigevent.sevt_signo is set to a valid signal number (see signal(5)), the async I/O

sproc will send the requested signal to the user process at the completion of the aio

transfer. Setting this value to 0 will prevent a signal from being sent.

Member

Type

Member

Name
Member Description

int aio_fildes file descriptor to perform aio on

off_t aio_offset file offset position; used only if O_APPEND

is not set for aio_fildes

volatile

void *

aio_buf buffer to write from/read into

size_t aio_nbytes number of bytes to read/write

int aio_reqprio aio priority

struct

sigevent

aio_sigevent signal to be generated on completion

int aio_lio_opcode opcode for lio_listio() call; one of

LIO_READ, LIO_WRITE or LIO_NOP

Using Asynchronous I/O

Using Asynchronous I/O and Direct I/O in IRIX 5.X 3

One of the more powerful features of asynchronous I/O is that a user process can simul-

taneously enqueue a number of requests using the lio_listio(3) call:

int lio_listio(int mode, aiocb_t **list, int nent, sigevent_t *sig)

Here the process requests nent aio transactions. If mode is set to LIO_WAIT, the process

will block until all nent transactions are complete. If set to LIO_NOWAIT, the process

will not wait, but instead will be signaled with the signal specified in

sig.sevt_signo. (If sig is set to NULL or sig.sevt_signo is set to 0, no signal will be deliv-

ered). In the case of lio_listio(3), any setting of signal delivery in the individual control

blocks will have no effect.

The user process can choose to synchronously wait for aio completion with the aio_sus-
pend(3) call:

int aio_suspend(const aiocb_t **aiocbp, int cnt, timespec_t *timeout)

The aiocbp argument is a cnt list of pointers to aio control blocks, and the timeout is the

amount of time to wait for completion before returning from the call. This gives a pro-

gram the capability of queuing a number of aio requests, and then waiting until:

• at least one of them is completes

• the program is interrupted by a signal

• the timeout specified in the call expires

The user has limited control of the aio request once it has been queued. Requests can

only be cancelled or queried.

aio_cancel(3) can be used to cancel a pending aio request:

int aio_cancel(int fildes, struct aiocb *aiocbp)

Setting aiocbp to NULL will cause all outstanding aio requests on that file descriptor to

be canceled.

The function call will return:

Canceling an aio request will cause any requested signal to be delivered to the process

that initiated the request.

There are two ways to query aio completion status:

Return Value Description

AIO_CANCELED all outstanding aio requests were canceled

AIO_NOTCANCELED some requests, but not all, were canceled

AIO_ALLDONE all requests were completed before canceling

Asynchronous I/O Example

4 Using Asynchronous I/O and Direct I/O in IRIX 5.X

• When using aio_suspend(3) along with aio_error(3) and aio_return(3), the

user process incurs the least amount of overhead using aio. Upon return

from aio_suspend(3), aio_error(3) and aio_return(3) can be applied to the

individual aio control block for completion status.

• Instead of waiting for the aio completion synchronously, the process can

continue its execution and receive the completion notice via the IRIX signal

mechanism. The signal type to be delivered is specified as described previ-

ously either in the aio_sigevent.sevt_signo field of the aio control block, or

as the sig.sevt_signo argument to lio_listio(3). Because of the overhead of

asynchronous signal delivery, this method is most appropriate when:

- the number of outstanding async I/O requests is small

- the process cannot afford to block, as it has other time sensitive tasks to

complete

Asynchronous I/O Example

The following simple example shows an aio read being initiated:

#include <aio.h>
#define READ_BUFFER_SIZE 4096 * 4
/* Signal handler for read completion */
extern void read_complete_handler();

aiocb_t aio_request; /* AIO request control block */
aiocb_t *aio_p = &aio_request;
off_t offset; /* Program maintained offset */
char read_buf[READ_BUFFER_SIZE]; /* Read req buf */

void read_complete_handler(){
/* Signal handlers should be as short as possible
 * so as not to cause additional overhead
 * /
printf(“aio transfer complete\n”);

}

main(int argc, char* argv[]) {
int fd, retval;
timespec_t timeout;
/* open file for asynchronous reads */
if ((fd = open(argv[1], O_RDONLY)) == -1) {

perror(“open”);
exit(1);

}
/* establish the handler for read completion */
sigset(SIGUSR1, read_complete_handler);

offset = 0; /* Start read at beginning */

Asynchronous I/O Caveats

Using Asynchronous I/O and Direct I/O in IRIX 5.X 5

for (;;) {
int status = 0;

/* Set up asynchronous read control block */
aio_request.aio_fildes = fd;
aio_request.aio_offset = offset;
aio_request.aio_buf = read_buf;
aio_request.aio_nbytes = READ_BUFFER_SIZE;
aio_request.aio_reqprio = 0;
aio_request.aio_sigevent.sigev_signo = SIGUSR1;

/* Enqueue asynchronous read request */
aio_read(&aio_request);

/* suspend until the aio is complete, a signal is
received, or the timeout expires */
timeout.tv_sec = 1;
timeout.tv_nsec = 0;
retval = aio_suspend((const aiocb_t **)&aio_p,

1, &timeout);

/* Should not get here until read is done */
status = aio_return(&aio_request);
if (status > 0) {

printf(“bytes read %d\n”, status);
offset += status;

} else if (status == 0) {
printf(“<EOF>\ntotal read = %d\n”, offset);
exit(0);

} else if (status == -1) {
printf(“total read = %d\n”, offset);
printf(“aio_read: %s\n”,

strerror(aio_error(&aio_request)));
exit(1);

}
}

}

Asynchronous I/O Caveats

Regardless of the number of aio slave processes and processors available, no more than

one request can occur simultaneously on a given file descriptor in a regular file system.

This is because the file table entry is locked for use by one process at a time, in order to

ensure consistency and avoid race conditions in the update of the file offset. To get

around this problem, a regular file can be opened multiple times, thereby providing mul-

tiple file table entries. Concurrent aio request control blocks can be assigned to a differ-

ent file descriptor of the same file; the user then must take care to ensure consistency of

writes into/reads from this file. (When writing to a raw device, multiple requests can

occur simultaneously on a single file descriptor. Since writing via the raw device file

bypasses the normal file system mechanism, there are no file table entries to lock and

unlock.)

Asynchronous I/O Applications

6 Using Asynchronous I/O and Direct I/O in IRIX 5.X

Asynchronous I/O Applications

There are several key applications which can benefit from the use of asynchronous I/O.

It allows a real-time process to process I/O requests without blocking, and reduces the

latency involved with an I/O operation. When used in conjuction with direct I/O, asyn-

chronous I/O can be used to give an application complete control over I/O buffering,

thereby customizing a buffering scheme for a particular use, such as fast video data pro-

cessing. An OLTP process can collect a series of requests, enqueue them, then return to

further input processing while the transactions are completed.

Direct I/O

Direct I/O allows an application to bypass the RAM buffer cache, and gain I/O perfor-

mance when reading and writing large files.

Normal EFS I/O utilizes a delay write and read ahead mechanism whereby data to and

from disk files are buffered in memory. Traditional UNIX implementations provided a

specified area of memory called the buffer cache in which to buffer this file system I/O.

The number and size of these buffers were typically set by UNIX kernel reconfigura-

tion. Starting with IRIX 3.3, the concept of a buffer cache limited in size was obsoleted

in favor of an integrated page and data cache, in which the size of the buffer cache can

grow and shrink with I/O demands. In this scheme, perhaps a significant portion of

available RAM memory can be used for buffering file system I/O.

Data cached in the integrated page and data cache is written out by the bdflush daemon,

which operates every five seconds. Pages of data that have sufficiently aged (not been

modified recently) are then written out to disk.

The original intention of caching file system data in memory was to reduce the amount

of actual disk I/O taking place. The design favored a usage pattern in which blocks writ-

ten to disk are frequently read back in, modified, and written back. Finding the data

more often in memory than out on disk should improve overall I/O performance. How-

ever, this caching system has one shortfall: data must be copied from user and kernel

space (an operation called a bcopy), in order to become a part of the cache. When read-

ing and writing large files, the amount of extra copies can cause significant performance

degradation.

Using Direct I/O

Using Asynchronous I/O and Direct I/O in IRIX 5.X 7

Through the use of direct I/O, this performance degradation can be avoided, because

data is transferred directly from the user process to the disk (a process called Direct

Memory Access, or DMA), without being cached in memory:

One large disadvantage of direct I/O is that the data is always written synchronously, i.e.

the user process will not return from the read or write until the data is transferred. Since

this synchronous behavior may in turn decrease performance, it is suggested that marry-

ing asynchronous I/O with direct I/O will provide the best performance gains.

Using Direct I/O

When performing direct I/O on a file, the user buffers must conform to the characteris-

tics of the raw disk partition. The requirement sets a minimum transfer size (the block
size of the file system) and alignment of data along set boundaries. Since these parame-

ters can vary from file system to file system, the user program should use an fcntl(2) call

to query for this information:

retval = fcntl(fd, F_DIOINFO, &dioinfo)

where dioinfo is of type struct dioattr:

struct dioattr {
unsigned d_mem; /* buffer alignment */
unsigned d_miniosz; /* min transfer size */
unsigned d_maxiosz; /* max transfer size */

}

Normal
Direct

Cached I/O (Uncached) I/O

Integrated Page-
Data Cache

User process
buffer

User process
buffer

Disk Blocks Disk Blocks

DMA

DMA

bcopy

Figure 1 Comparison between normal and direct I/O

Direct I/O example

8 Using Asynchronous I/O and Direct I/O in IRIX 5.X

The value returned in d_mem can then be used as an argument in memalign(3C) to mal-

loc buffer space on the proper boundary:

buffer = memalign(dioinfo.d_mem, 100 * dioinfo.d_miniosz)

The d_miniosz field specifies the smallest size, in bytes, that can be transferred at one

time. The size of all transfers must be some multiple of d_miniosz, not to exceed d_max-
iosz. (The defaults for EFS file systems are 512 byte boundaries, minimum transfer size

of 512 bytes, and a maximum transfer size of 4 Mb.)

To initiate direct I/O on a file, the file must be open(2)’ed using the O_DIRECT flag:

retval = open(“myfile”, O_RDONLY | O_DIRECT)

If the file has been previously opened without the O_DIRECT flag, the FDIRECT flag of

fcntl(2) can be used:

retval = fcntl(fd, F_SETFL, FDIRECT)

Direct I/O example

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>

main()
{

struct dioattr dioinfo;
int fd, retval, size;
int *data;
fd = open(“/usr/tmp/test_dio”, O_CREAT|O_DIRECT);
retval = fcntl(fd, F_DIOINFO, &dioinfo);

/* allocate a buffer 1000 * the min size */
size = 1000 * dioinfo.d_miniosz;
data = (int *) memalign(dioinfo.d_mem, size);

/* fill buffer with pixel data */

write(fd, (void *)data, size);

}

Direct I/O Caveats

Using Asynchronous I/O and Direct I/O in IRIX 5.X 9

Direct I/O Caveats

Direct I/O is an SGI extension available with the SGI proprietary Extent File System

(EFS) only.

Direct I/O Applications

Users will find direct I/O especially useful when transfering large video and audio files

back and forth between memory and disk. Coupled with asynchronous I/O, direct I/O

can give an application the opportunity to use its own customized buffering scheme to

most efficiently move large amounts of data.

Direct I/O Applications

10

